Refine Your Search

Topic

Search Results

Technical Paper

Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car

2024-01-16
2024-26-0210
Key on/off (KOKO) Vibration plays a vital role in the quality of NVH (Noise Vibration and Harshness) on a vehicle. A good KOKO experience on the vehicle is desirable for every customer. The vibration transfer to the vehicle can be refined either by reducing the source vibrations or improving isolation efficiency. For the engine mounting system of passenger cars, the mounts are an isolating element between the powertrain and receiver. Various noise, Vibration, and harshness criteria must be fulfilled by mounting system performance like driver seat rail vibration (DSR), tip-in/tip-out, judder performance, DSR at idle and Key on/off Vibration. Out of these requirements, in the paper, the investigation is done on KOKO improvement without affecting other NVH parameters related to mount performance. Higher damping is required to isolate Vibration generated during the Key-on event, and lower damping is required during the idle condition of the vehicle.
Technical Paper

Crank-Train System Balancing and Crankshaft Optimization in Different Outlook

2024-01-16
2024-26-0209
IC (Internal Combustion) engines are evolved and refined over time to greater levels of technology in terms of emission, performance, NVH (Noise, Vibration & Harshness), and design philosophy. Crank-train generates a greater impact on NVH optimization due to its geometry and dynamics. Hence, more attention to mass balancing is required to minimize the negative impact on NVH. The present work demonstrates the evaluation of balancing rate of crank-train system from the first principle of couple balancing. Calculations are conducted at the concept stage to estimate an internal rotating couple balancing of crank-train system due to counterweights and rotating masses. As crankshaft weighs approximately 10-12% weight of an engine and its counter weight plays a vital role in balancing, its optimization will result in a significant impact on NVH.
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

CAE Based Benchmarking of Shaft Deflection for Transmission Gear Rattle Noise

2024-01-16
2024-26-0245
Vehicle transmission gear rattle is one of the most critical NVH irritants for refined vehicles. It is perceived more dominantly in lower gears of vehicle running. It depends on various design parameters like engine input torque amplitude & fluctuations, driveline torsional vibrations, gear micro & macro geometry, shaft flexibility, etc. Establishing exact contribution of each of these parameters to transmission rattle, thru experimental or simulation technique, is very challenging. Current paper explains the NVH CAE benchmark approach deployed to understand difference in rattle behavior of two transmission designs. Paper focuses on simulation of gear impact power and its sensitivity to transmission shaft deflections.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

Gearshift Simulator – Perceive Gearshift Feel at Early Development Stage

2024-01-16
2024-26-0292
One of the very first customer touchpoint in a vehicle is quality of gear shifting. Gearshift quality is perceived as a symbol of refinement of a vehicle. Globally, lot of efforts are taken to refine the gearshift quality. Design improvements in internal components of transmission, cable and shifter assembly, knob design iterations are carried out to arrive at optimum gearshift quality at the vehicle level. Current practice for this activity includes processes such as design modification, manufacturing of proto components, assembly of components and fitment in the vehicle. This vehicle is then instrumented with sensors and data acquisition units to capture the parameters which determine the gearshift quality. This is an iterative process which goes on until necessary refinement/improvement is achieved. This process requires investment of lot of time, efforts and the budget. This paper describes a virtual approach to arrive at optimum design of components.
Technical Paper

Effect of Torsional Vibration on Transmission and Validation Process

2024-01-16
2024-26-0363
Transmission of a vehicle, being driven by an internal combustion engine is susceptible to torsional vibrations which are inherent property of an internal combustion engine. Torsional are produced in the engine because of multiple power strokes happening in multiple cylinders of the engine at regular intervals. These torsional vibrations affect each and every rotating component in the powertrain. A lot of work has been done in past in the area of ECU calibration, flywheel inertia, clutch dampener springs etc. to reduce the vibrations. These methods have limitations for the extent of damping that can be introduced into the system. Un-damped torsional vibrations when transferred further it affect rotating / oscillating components of transmission. Inside the transmission, it leads to rattle issues and affect the life of synchronizers or engaging gears. This paper describes the methodology to address the effect of high torsional vibration on synchronizer of commercial vehicle.
Technical Paper

E-Drive System Selection Criterion for EV Commercial and Passenger Vehicles Segments

2024-01-16
2024-26-0253
Climate change due to global warming are major concerns. Electric vehicles are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Electric vehicle component selection is a complex process, which has to fulfil multiple requirements with trade-off between performance & efficiency, efficiency & cost, performance & NVH, packaging & performance etc. In addition, E-drive selection in passenger & commercial vehicle is different due to application difference. Hence, it is a great challenge to select right E-Drive comprising motor, MCU and overall gear ratio to meet EV program constraints and targets. This study focuses on criterion used for selecting an E-Drive system comprising motor, MCU and overall gear ratio for electric vehicles in commercial and passenger vehicle segments.
Technical Paper

Powertrain Mounting System NVH Simulation Methodology Using Transfer Path Analysis Technique for Electric Vehicles

2024-01-16
2024-26-0225
In comparison to traditional gasoline-powered vehicles, Electric vehicles (EVs) development and adoption is driven by several factors such as zero emissions, higher performance, cost effective in maintenance, smoother and quieter ride. Global OEMs are competing to provide a reduced in-cab noise for ensuring a smooth and quiet driving experience. Short project timelines for EV demands quick design and development. In initial stages of project, input data availability of EV is limited and a simplified approach is necessary to accelerate the development of vehicle. This paper focuses on simulation methodology for predicting structure borne noise from powertrain deploying Transfer Path Analysis approach. Current simulation methodology involves full vehicle model with multiple flexible bodies and full BIW flexible model which leads to complex modelling and longer simulation times.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

Development of Low Viscosity Fuel Economy Engine Oil for Commercial Vehicles

2024-01-16
2024-26-0040
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines.
X